RLOP HNC E-1411 Flange Leak and Delayed Plant Start-up

IMPACT ERM Loss #36512 Investigation #22506

Mark Radtke – DED Plant Support Team Leader

Incident Date: April 26, 2012
Presentation Date: Aug 6, 2012

Incident Summary

E-1411 Inter-Reactor Quench Exchanger

- On April 26, 2012, HNC Start-up was delayed when E-1411 HX leaked during start-up (no flow in shell)
 - Shell-side flow re-established and leak stopped
- E-1411 again leaked during second start-up attempt (no flow in shell)
 - Shell-side flow re-established and leak stopped
 - Maintenance "checked tightness" of flange bolts
- During pre start-up hot strip (no flow in shell) leak again appeared.
 Hot strip completed with steam lances on leaks
 - At DED request all nuts replaced and newly engineered closure loads established.
- HNC Plant was started up leak-free. On-test April 30, 2012.

Root Cause 1

What happened

 No-flow conditions on E-1411 shell-side created large temperature differentials between cold shell and hot tube-side. These differentials create closure component differential growths that can significantly unload the gasket

Why it happened

 Operations desired to lower feed temperatures to allow for hot strip and subsequent Plant start-up.

Proposed Solution

 Recognize that unusual plant postures can create previously unexpected design conditions for E-1411 bolted closure, and design for such.

Root Cause 2

What happened

• When originally developed, the E-1411 closure procedure did not consider the extreme temperature differentials which occurred between shell and channel.

Why it happened

 "No flow on shell-side" operating scenario was not anticipated as a likely event.

Proposed Solution

 Re-evaluate E-1411 closure procedure while considering the extreme temperature differentials that can occur in unusual operating situations.

E-1411 Flange Details

© 2011 Chevron

Casual Factor

■ Initial loss of HNC recycle flow owing to K-1400 trip resulted in implementation of emergency shutdown procedures which caused a large temperature drop on the E-1411 shell-side relative to the hot tube-side inlet temperature.

(Refer to Loss # 36434 and TapRoot Investigation # 22505)

© 2011 Chevron 6

Additional Considerations

- DED to develop E-1411 closure procedure which considers the extreme temperature differentials which can occur with shell-side no-flow conditions.
 - Preliminary study has determined that solution is feasible

Investigation + / △

- What Went Well:
 - Excellent and varied team representation
 - Event details were very clearly known
 - Investigation was performed in a timely manner while accurate operational information could be readily obtained
- What Can We Improve Next Time:
 - If this investigation would have been done in 2008 when HX first leaked, it may not be required at this time

© 2011 Chevron 9